
João Pedro Teixeira Brandão

Parametric search for variants of nested
resource allocation problems

Dissertação de Mestrado

Thesis presented to the Programa de Pós–graduação em Infor-
mática da PUC-Rio in partial fulfillment of the requirements for
the degree of Mestre em Informática.

Advisor: Prof. Thibaut Victor Gaston Vidal

Rio de Janeiro
February 2019

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

All rights reserved.

João Pedro Teixeira Brandão

Bachelor’s in Applied Mathematics (2016) at Pontifícia Uni-
versidade Católica do Rio de Janeiro (PUC-Rio). Worked at
Tecgraf from 2011 to 2012 in the Engineering Automation
Group and took part in the first Apple Developer Academy
program offered by PUC-Rio in 2015.

Bibliographic data
Brandão, João Pedro Teixeira

Parametric search for variants of nested resource allocation pro-
blems / João Pedro Teixeira Brandão; advisor: Thibaut Victor Gaston
Vidal. – 2019.

52 f.: il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de
Janeiro, Departamento de Informática, 2019

Inclui bibliografia

1. Informática – Teses. 2. Busca paramétrica. 3. Restrições
aninhados. 4. Alocação de recurso. 5. Otimização. 6. Programação
linear. I. Vidal, Thibaut Victor Gaston. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Acknowledgments

To my advisor, Professor Thibaut Vidal for his dedication and generosity for
sharing his knowledge with me.

To my parents and brother, Sonia and (Luiz)2 Brandão for their unconditional
support.

To PUC’s Informatics Department for their support in providing an environ-
ment that fosters knowledge sharing.

To my colleagues at GoBlock for being supportive of my endeavors.

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
for financing this research under grant 134797/2016-7.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Abstract

Brandão, João Pedro Teixeira; Vidal, Thibaut Victor Gaston (Advi-
sor). Parametric search for variants of nested resource alloca-
tion problems. Rio de Janeiro, 2019. 52p. Dissertação de mestrado
– Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

The Resource Allocation Problems seek to find an optimal repartition
of resources into a fixed number of areas. In this thesis, we consider a
resource allocation problem with a linear objective and two distinct sets
of constraints: a set of nested constraints, where the partial sums of the
decision variables are limited from above and a linear constraint that defines
a hyperplane. We propose a weakly and a strongly polynomial algorithm.
The weakly polynomial algorithm requires certain assumptions of the data
and runs in O(n log n log |Λ||I|) time, where n is the number of decision
variables, Λ is an interval in the dual space, and |I| relates to the precision
of the data. The strongly polynomial algorithm is based on Megiddo’s
parametric search technique, and obtains a complexity of O(n log n). These
are large improvements upon the O(n3/ log n) complexity of the generic
Interior Point Method. In addition, an experimental analysis was carried
out and the algorithms showed to be more efficient and produced optimal
solutions for problem instances with up to 1,000,000 variables.

Keywords
Parametric Search; Nested Constraints; Resource Allocation; Op-

timization; Linear Programing.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Resumo

Brandão, João Pedro Teixeira; Vidal, Thibaut Victor Gaston. Busca
paramétrica para variantes do problema de alocação de re-
curso aninhado. Rio de Janeiro, 2019. 52p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Os problemas de alocação de recurso procuram encontrar uma re-
partição ideal de recursos a um número fixo de áreas. Nesta dissertação,
consideramos um problema de alocação de recurso com uma função obje-
tiva linear e dois conjuntos distintos de restrições: um conjunto de restrições
aninhados, onde as somas parciais das variáveis de decisão são limitadas por
cima e uma restrição linear que define um hiperplano. Propomos um algo-
ritmo fracamente e um fortemente polinomial. O algoritmo fracamente poli-
nomial requer algumas suposições sobre os dados e possui complexidade de
O(n log n log |Λ||I|), onde n é o número de variáveis, Λ é um intervalo no espaço
dual, e |I| está relacionado com a precisão dos dados. O algoritmo fortemente
polinomial é baseado na técnica de busca paramétrica de Megiddo e obtém
uma complexidade O(n log n). As complexidades obtidas são superiores à
complexidade do método genérico de Pontos Interiores, O(n3/ log n). Além
disso, uma análise experimental foi realizada e os algoritmos mostraram-se
mais eficientes e produziram soluções ótimas para instâncias de problemas
com até 1.000.000 variáveis.

Palavras-chave
Busca paramétrica; Restrições aninhados; Alocação de recurso;

Otimização; Programação linear.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Table of contents

1 Introduction 9

2 Literature Review 12
2.1 Resource Allocation Problem 12
2.2 Parametric Search and The Slope Selection Problem 13

3 Preliminaries 16
3.1 Known Results on the RAP-LB and RAP-NC 16
3.2 Lagrangean Relaxation 17
3.3 Optimality Conditions of RAP-LB-L 18
3.4 Dual Optimal Property 19
3.5 Obtaining Primal Feasibility 20
3.6 Problem Feasibility Check 22

4 Weakly Polynomial Algorithm 24
4.1 Correctness and Complexity 25

5 Strongly Polynomial Algorithm 28
5.1 Parametric Search 28
5.2 Parametric Search Applied to RAP-LB-L 30
5.3 Sequential Algorithm C 32
5.4 Complexity and Improvement 35

6 Implementation 37
6.1 Problem Instances 38
6.2 Results 39

7 Conclusion 44

Bibliography 45

A Proof of W (λ) being Convex 49

B Optimal Breakpoint 50

C Proof of Proposition B.1 51

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

List of figures

Figure 5.1 Lines y1, y2, and y3 and their intersections at λ1, λ2, λ3. 30
Figure 5.2 Illustration of each step of the simulation of one parallel

step of AKS sorting network. 32
Figure 5.3 Cole’s improvement 36

Figure 6.1 Average Time(s) v.s. Input Size(n) of uniformly gener-
ated nested constraints. T-Weakly: ×. T-Strongly: +. T-Mosek:
�. 39

Figure 6.2 Average Time(s) v.s. Input Size(n) of decreasing nested
constraints. T-Weakly: ×. T-Strongly: +. T-Mosek: �. 40

Figure 6.3 Average Time(s) v.s. Input Size(n) of increasing nested
constraints. T-Weakly: ×. T-Strongly: +. T-Mosek: �. 40

Figure C.1 Function g, it’s line segments gL and gR, and line y. 51

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

List of tables

Table 6.1 Average CPU time for experiments from uniform data 41
Table 6.2 Average CPU time for experiments from decreasing data 41
Table 6.3 Average CPU time for experiments from increasing data 42

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

1
Introduction

Resource Allocation Problems, seek to find an optimal repartition of
resources into a fixed number of areas. The resource can represent, for ex-
ample, time, money, or workforce. The areas can represent assets, locations,
or tasks. An objective value function determines the cost of choosing to allo-
cate a quantity of the resource to a particular area. The optimization goal is
to find the allocation of resource that has the smallest value of the objective
function out of all other possible allocations. The simple RAP, aims to mini-
mize a separable objective function subject to one linear resource constraint.
Most of the research on the RAP focuses on extensions of the problem with
one additional constraint, due to the ample applications of the model. Sev-
eral of these variants are reviewed in (Patriksson2008), (Patriksson2015), and
(Hochbaum1994). However, variants with two or more distinct sets of con-
straints have not been the subject of dedicated studies up to now. The simple
RAP can be formally defined as:

min F(x) =
n∑
i=1

fi(xi) (1-1)

n∑
i=1

xi = B (1-2)

xi > 0, i ∈ {1, ..., n} (1-3)

The objective function, defined in (1-1), is separable, i.e. the cost of
allocating resource to a variable is determined solely by the quantity allocated
to that variable, xi. The resource constraint is defined by Equation (1-2), the
nonnegativity constraint is defined in Inequality (1-3).

In this study, however, we focus on the model shown by Equations (1-

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 1. Introduction 10

4)–(1-8):

F (x) = min
n∑
i=1

cixi (1-4)

s.t.
∑
i∈Jk

xi 6 bk, k ∈ {1, ...,m} (1-5)

n∑
i=1

xi = B1 (1-6)

n∑
i=1

pixi = B2 (1-7)

xi > 0, i ∈ {1, ..., n} (1-8)

The objective function (1-4) is linear. The set of inequalities, defined by
(1-5), are the nested constraints. The sets Jk are in a nested format where
Jk−1 ⊂ Jk, and Jm = {1, ..., n}, and bm = B1. The resource constraint is
defined in Equation (1-6). In Equation (1-7), the linear constraint is defined.
Lastly, the nonnegativity constraint is defined by Inequality (1-8). We will
denote the problem defined by Equations (1-4)–(1-8) as RAP-LB-L, and the
RAP-LB-L without the extra linear constraint (1-7) as the RAP-LB.

The RAP-LB-L is connected to inventory management subproblem of
the Inventory Routing Problem (IRP), see (Hartl2016) and (Coelho2014), and
the Bike Sharing Problem, see (Chemla2013). By studying and understanding
the formulation (1-4)–(1-8), we hope to make the first steps towards efficiently
solving the more complex settings in the future.

We propose two algorithms based on Lagrangean Relaxation, a weakly
and a strongly polynomial algorithm. Under certain assumptions of the data
we develop a weakly polynomial algorithm with complexity O(n log n log |Λ||I|),
where n is the number of variables, Λ is the search interval in the dual space,
and |I| is a precision parameter. The proposed strongly polynomial algorithm
has no assumptions of the data and has complexity O(n log n).

The strongly polynomial algorithm is a variant of (Cole1989)’s solution
to the slope selection problem. The solution applies the parametric search
technique of (Megiddo1983) to develop an optimal algorithm. Both algorithms
achieve better complexities than the Interior Point method (IP), introduced by
(Karmarkar1984) and improved to O(n3/ log n) by (Anstreicher1999), which
to the best of our knowledge is the latest improvement.

The structure of this dissertation is as follows. In Chapter 2, we review the
literature on RAP and discuss the different approaches as well as the results
attained. We also review the literature on the parametric search technique
and slope selection problem. Chapter 3 discusses the optimality conditions

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 1. Introduction 11

of the RAP-LB-L and characterize the dual optimal, as well as detailing a
method for extracting the primal optimal from the dual optimal. Chapters 4
and 5 present the algorithms and a proof of their correctness and complexity.
Chapter 6 reports our experiments and results carried out with the weakly and
strongly polynomial algorithm. Finally Chapter 7 concludes.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

2
Literature Review

2.1
Resource Allocation Problem

Though there has been extensive research on variants of the RAP
concerning only one set of constraints as surveyed by (Patriksson2008) and
(Patriksson2015), variants with two sets of constraints have been less explored.
The RAP variant with quadratic objective with only constraint (1-6) and
a box constraint, where each variable is limited to a finite range, has been
shown to be solvable in linear time by (Brucker1984). A different approach
based on the prune and search technique developed by (Megiddo1984), allowed
(Megiddo1993) to show that the same problem but with a constant number of
linear constraints can also be solved in linear time. The paper shows that more
general class of separable quadratic programming problems can be solved in
linear time, where the problem worked on by (Brucker1984) is only a special
case.

Almost all RAP studied in the literature have unimodular constraints,
as seen in (Ibaraki1988). (Hochbaum1994) show that several subclasses of
unimodular constraint problems cannot be solved in a strongly polynomial time
in the presence of continuous variables. By using a result from (Renegar1987),
(Hochbaum1994) demonstrated a lower bound complexity of Ω(

√
log log(B

ε
))

for a special case of the general RAP when the floor operation is allowed. The
ε term is the desired accuracy of the solution. The solution for the continuous
case is then an ε-approximate solution, where xε is ε-approximate if there
exists an optimal solution x∗ such that ||xε − x∗||∞ 6 ε. Another significant
result from (Hochbaum1994) is the proximity theorem which is applied to the
greedy algorithm. At each iteration the greedy algorithm chooses to increment
a variable by one, such that the increment results in the greatest increase
of the objective function. The proximity theorem allows the increment to be
arbitrary. This results in an O(n(log n + F) log(B

n
)) algorithm for the general

integer problem and O(n(log n+ F) log(B
nε

)) for the continuous case, where F
is the number of operations required to check the feasibility of an increment
in the solution, and B is the resource.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 2. Literature Review 13

Some variants of the RAP are discussed in (Hochbaum1994). The tree
RAP variant has m additional inequalities. The inequalities are on subsets of
the set Jm = {1, ..., n}. The subsets Jk form a tree structure where the root
is the set Jm, and nodes connected by edges are proper subsets. One special
case of the tree RAP variant is the generalized upper bound resource allocation
problem (GUB), where the subsets of Jm form a partition. Another tree variant
is the nested RAP, where the tree structure is a path. It would be a special
case of the RAP-LB-L without constraint (1-7).

An equivalent variant with the same nested structure is the RAP-LB,
which is also known as the RAP with linear ascending constraints. The RAP-
LB can be reduced to RAP-UB in linear time. In this problem, the objective
function is convex and there are m inequalities on top of subsets of Jm that
have a nested structure. The inequalities are bounded from above. The study
of this class of problems is motivated by its applications in signal processing
and communications, see (D’Amico2014) and (Akhil2014).

A more general nested structure, named RAP-NC, where the sums of
variables in Jk are bounded from below and above is addressed in (Vidal2018).
The proposed decomposition algorithm is built on previous work from,
(Vidal2016). The achieved complexity is O(n logm log nB

ε
) for the continuous

case and O(n logm logB) for the integer case. In particular (Vidal2018) ob-
tains an O(n logm) complexity for cases when the objective function is either
linear or quadratic.

Finally, a subproblem of both the IRP and the bike sharing can be
modelled by a RAP with two different sets of nested constraint. This variant
has been studied in (Hartl2016) and (Chemla2013). In (Chemla2013), the
authors study a bike sharing system and deals with a generalization of several
pickup and delivery problems. In the bike sharing system, there are stations
scattered accross the city. Each station has bikes where people can pick up a
bike and drop it off at another station. The subproblem is then, given a fixed
route, find the best way to rebalance the stations.

2.2
Parametric Search and The Slope Selection Problem

Parametric search is a technique that uses parallel algorithms to design
efficient serial algorithms. To apply the technique to problem B, this problem
must depend monotonically on a parameter, λ. Due to this monotonicity, an
algorithm that employs binary search can be made to solve B, however it would
not be strongly polynomial. Parametric search, on the other hand, constructs
strongly polynomial algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 2. Literature Review 14

Parametric search was first formally introduced by (Megiddo1983). How-
ever, Megiddo had already applied the technique in his earlier work. In
(Megiddo1981) the technique is applied on a RAP, in which the objective func-
tion is the ratio between the sum of separable concave functions and a sum
of separable convex functions. The only constraint, other than the resource
constraint, is that the variables are positive integers.

Further improvements upon the basic technique were achieved by
(Cole1987). The improvement enables a complexity reduction of a factor of
O(log n) under special cases of the parametric search framework. However,
the gain in theoretical efficiency comes at the cost of further complicating the
parametric search implementation.

Megiddo’s parametric search has been applied extensively to solve ge-
ometric optimization problems. Some of the applications can be found in
(Chazelle1992), (Agarwal1994) and (Agarwal1998). The parametric search has
also been used to find the Theil-Sen estimator in (Sen1968). The Theil-Sen es-
timator is used to robustly fit a line to a sample of points by choosing the
median slope of the points. It is less sensitive to outliers than the traditional
linear regression. The problem of finding the median slope among a set of
n points is a particular case of a more general problem known as the Slope
Selection Problem (SSP).

In the SSP, there are n points in <2 and for every pair of points, a line
segment is drawn. The task is to find the pair of points that define a line
segment that has the k-th shallowest slope out of all the other line segments.
The problem was first solved by (Cole1989) using parametric search. In the
paper, the authors proved a lower bound for the complexity of O(n log n). The
authors first achieved a O(n log3 n) complexity. By using the optimization from
(Cole1987), they reduced the complexity to O(n log2 n). Finally, by developing
a linear time procedure to substitute another O(n log n) time procedure, the
overall complexity was reduced to the optimal O(n log n). There are other
algorithms that solve the problem but do not use parametric search, see
(Katz1993) and (Brönnimann1998). Instead of using parametric search, the
former uses expander graph (Lubotzky2012), while the latter uses ε-nets. Both
algorithms, however, use the linear time procedure developed in (Cole1987).

Practical implementations of Megiddo’s technique took longer than their
theoretical definitions to become a reality. (vanOostrum2004) implemented a
sorting based application of parametric search. The quicksort algorithm was
used. Although it has a worse case complexity of O(n2), its simplicity of im-
plementation and average complexity of O(n log n) lead to efficient implemen-
tations. Yet, due to quicksort’s algorithm, Cole’s optimization cannot be im-

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 2. Literature Review 15

plemented under this framework, as noted in (vanOostrum2004). The authors
also argue that under certain realistic assumptions, the optimization may be
unnecessary. Finally, (Goodrich2013), proposed a practical implementation of
Cole’s technique that has the same complexity with high probability. They
substitute the AKS sorting network that was used in (Cole1987) with the box
sort (Reischuk1985).

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

3
Preliminaries

This chapter states some basic results about the RAP with nested
constraints, the optimality conditions of our problem, a procedure that obtains
a primal optimal solution from the dual optimal, and detail a procedure to
check for problem feasibility. As such, we will assume feasibility throughout.
The results in this chapter will serve to prove correctness of our weakly and
strongly polynomial algorithms.

Bold face notation will be used to denote vectors, i.e. x = (x1, x2, ..., xn),
while normal font will be used for scalar variables. We assume, without loss of
generality, that all coefficients and constants are integers.

3.1
Known Results on the RAP-LB and RAP-NC

Problem (1-4) with constraints (1-5), (1-6) and (1-8) is the RAP-LB. It
is known that this problem can be trivially solved, in O(n) time, by the greedy
algorithm defined in Algorithm 3.1.1.

Algorithm 3.1.1: Greedy(λ)
1 x← 0;
2 for k ← m to 1 do
3 ∆← bk − bk−1;
4 imin ← arg min

i
{ci| i ∈ (Jk − Jk−1) ∪ {imin}};

5 ximin
← ximin

+ ∆
6 end

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 17

A special case of the problem addressed in (Vidal2018) is defined in
Equations (3-1)–(3-4). The problem is a generalization of the RAP-LB.

min
n∑
i=1

cixi (3-1)

s.t. ai 6
∑
i∈Jk

xi 6 bk, k ∈ {1, ...,m} (3-2)

n∑
i=1

xi = B1 (3-3)

ci 6 xi 6 di (3-4)

J1 ⊂ J2 ⊂ ... ⊂ Jm, Jm = {1, ..., n} (3-5)

The proposed divide-and-conquer algorithm runs in O(n logm) time
and is based on monotonicity arguments. In the algorithm, the solutions
found at lower levels of recursion are shown to be tighter bounds than the
nested constraints. This allows to simplify the problem and remove the nested
contraints (3-2), reducing the formulation to simple RAP, i.e. the problem
defined by Equations (1-1)–(1-3). With this, efficient RAP algorithms can
be used at each level of the recursion, such as the procedure developed by
(Brucker1984).

3.2
Lagrangean Relaxation

The Lagrangean Relaxation (LR) of problem RAP-LB-L defined in (1-
4)–(1-8), denoted as L(x, λ), is defined in Equations (3-6)–(3-9):

L(x, λ) =
n∑
i=1

cixi + λ
(n∑
i=1

pixi −B2
)

(3-6)

s.t.
∑
i∈Jk

xi 6 bk, k ∈ {1, ...,m} (3-7)

n∑
i=1

xi = B1 (3-8)

xi > 0, i ∈ {1, ..., n} (3-9)

The variable λ ∈ < is the respective dual variable of the linear constraint
defined in (1-7). Let X ⊂ <n be the set that satisfies the constraints defined
by (3-7), (3-8), and (3-9).

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 18

3.3
Optimality Conditions of RAP-LB-L

Most of the basic definitions and properties listed in this section can be
found in the book (Rockafellar1993). It is known that the finite intersection of
convex sets is convex, thus, we know that the feasible setX is also convex. From
Theorem 5.1 stated in (Rockafellar1993), the necessary optimality conditions
for the LR of RAP-LB-L are equivalent to the following saddle point conditions:

A couple (x∗, λ∗) is optimal, with x∗ being primal optimal and λ∗ being
dual optimal, if:

1. The minimum of ∑n
i=1 cixi + λ∗

(∑n
i=1 pixi − B2

)
, for x ∈ X is attained

at x∗ ∈ X.

2. The maximum of ∑n
i=1 cix

∗
i + λ

(∑n
i=1 pix

∗
i − B2

)
, for λ ∈ <, is attained

at λ∗.

We define the functions g and f , as per (Rockafellar1993):

g(λ) = inf
x∈X

n∑
i=1

cixi + λ
(n∑
i=1

pixi −B2
)
, λ ∈ < (3-10)

f(x) = sup
λ∈<

n∑
i=1

cixi + λ
(n∑
i=1

pixi −B2
)
, x ∈ X (3-11)

We denote W (λ0) ⊂ X to be the set of solutions to g(λ0), i.e. if
w ∈ W (λ0), then:

g(λ0) = 〈c,w〉+λ0(〈w,p〉−B2) 6 〈c,x〉+λ0(〈x,p〉−B2), ∀x ∈ X (3-12)

Clearly f(x) > L(x, λ) > g(λ), for x ∈ X and λ ∈ <. By Corollary 5.4. in
(Rockafellar1993), the authors show that the neccessary optimality conditions,
for linear programming problems, are also sufficient if the feasible set X forms
a polyhedra. Furthemore, if the function g has an optimal value λ∗ ∈ <, then
the function f also has an optimal solution x∗ ∈ X, and g(λ∗) = f(x∗).

Given that the feasible set X defined by constraints (1-5), (1-6) and (1-8)
are all linear, it follows that X is a polyhedra. Thus a necessary and sufficient
optimality condition for the RAP-LB-L is:

If there exists x∗, λ∗, such that f(x∗) = g(λ∗) and x∗ satisfies Equation
(1-7), then (x∗, λ∗) is optimal.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 19

3.4
Dual Optimal Property

If a function ϕ : < → < is concave and differentiable, the derivative at
the maximum value λ∗ would be equal to zero, i.e. dϕ

dλ (λ∗) = 0. However, in
our case, the function g is concave and piecewise-linear. As such, the function
is non-differentiable at its breakpoints.

To circumvent this issue, we rely on the notion of subgradient, defined
as follows:
Definition 3.1 A subgradient, v, at x0, of a concave function h : < → < is
defined as any value v such that:

h(x) 6 h(x0) + v · (x− x0) (3-13)

The set of subgradients at x0 is called the subdifferential. We denote the
subdifferential at a point x0 of a function h : < → < to be ∂h(xo). It is implied,
from the definition, that the subgradients are not unique at the breakpoints.
As such, the subdifferential is an interval. We now state a general property of
the optimal dual, λ∗ of g.

Property 3.2 λ∗ ∈ < is a global maximum of a concave piecewise-linear
function g, if and only if, 0 ∈ ∂g(λ∗).

The subdifferentials at λ, in our particular case of function g, are as
follows:

∂g(λ) = 〈x,p〉 −B2, x ∈ W (λ) (3-14)
This can be shown as follows: First we show that it is a valid subgradient,

then we show that any subgradient can be obtained through expression (3-14).
Let x ∈ W (λ) be a solution to g(λ) and w0 ∈ W (λ0) be solution to g(λ0).

g(λ)− g(λ0) = 〈c,x〉+ λ(〈p,x〉 −B2)− g(λ0) (3-15)

Substituting Equation (3-15) with Inequality (3-12):

6 〈c,w0〉+ λ(〈p,w0〉 −B2)− g(λ0) (3-16)

= 〈c,w0〉+ λ(〈p,w0〉 −B2)− 〈c,w0〉 − λ0(〈p,w0〉 −B2) (3-17)

= (〈p,w0〉 −B2)(λ− λ0) (3-18)

Finally we conclude, as summarized in Inequality (3-19), that 〈p,w0〉−B2

is a subgradient of g(λ0), where w0 ∈ W (λ0).

g(λ) 6 g(λ0) + (〈p,w0〉 −B2)(λ− λ0) (3-19)

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 20

To show that any subgradient of ∂g(λ) can be obtained by the expression
in (3-14), we first assume that λ is a breakpoint of the piecewise-linear concave
function g. If λ is not a breakpoint, then Equation (3-14) is true. Consider two
solutions x1,x2, such that x1 is a solution to one of the linear segments adjacent
to the breakpoint at λ and x2 is a solution to the other adjacent linear segment.
Clearly both 〈x1,p〉−B2 and 〈x1,p〉−B2 are subgradients to g at λ. We claim
that the set W (λ) is convex. The proof of this claim can be found in Appendix
A. Therefore for any µ ∈ (0, 1), we have w ∈ W (λ) where w = µx1 +(1−µ)x2.

Let v ∈ ∂g(λ). We know that 〈p,x2〉 − B2 < v < 〈p,x1〉 − B2. Given
that the function h(x) = 〈p,x〉 − B2 is continuous, and that W (λ) is convex,
then by the Intermediate Value Theorem, there exists a µ ∈ (0, 1) such that
v = 〈x, µx1 + (1 − µ)x2〉 − B2. We then conclude that the subgradients of g
can be uniquely determined by Equation (3-14).

In case λ∗ is a breakpoint, then Property 3.2 implies that there exists a
subgradient that is equal to zero, i.e. x∗ ∈ W (λ∗), such that:

〈p,x∗〉 −B2 = 0 (3-20)

The following property guarantees the existence of a breakpoint that is
optimal.

Property 3.3 If g is a piecewise-linear concave function, then there exists at
least one breakpoint that is optimal.

The proof of this well known result can be found in Appendix B.

3.5
Obtaining Primal Feasibility

To complete the chapter, we demonstrate a known method (Ravi1996)
on how to obtain a primal feasible solution from a dual optimal value λ∗.

We begin by describing how Algorithm 3.1.1 can be applied to solve
g, and how the breakpoints affects the procedure. Given a λ ∈ <, finding
a solution for g(λ) is equivalent to solving a RAP-LB. As such, the greedy
procedure described in Algorithm 3.1.1, can be used. We rewrite g for better
exposition:

g(λ) = inf
x∈X

n∑
i=1

(ci + λpi)xi − λB2 (3-21)

At each iteration, the greedy procedure chooses, from the available
indices, the weight, ci + λpi, that is lowest (Line 4). If there are two or more
indices with the same weight, i.e. i 6= j, ci+λpi = cj+λpj, any way of breaking
ties by distributing resources among variables xi and xj results in an optimal
solution.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 21

Such a situation corresponds to λ being a breakpoint, which occurs when
there exists i 6= j, such that ci + λpi = cj + λpj. For now, assume that there
are exactly two variables, xk and xl at the breakpoint λ. Given the previous
equality we have:

g(λ) = inf
x∈X

n∑
i=1,i 6=k,i6=l

(ci + λpi)xi + (ck + λpk)(xk + xl)− λB2 (3-22)

At the breakpoint, the solutions, xL and xR, determined by both the
left and right adjacent line segments are also valid solutions to g(λ). More
generally:

Proposition 3.4 If λ is a breakpoint and xL and xR are solutions to the left
and right lines adjacent to the breakpoint, respectively, then any solution of the
form x = µxL + (1− µ)xR, with µ ∈ (0, 1) is a solution to g at λ.

Proof. There are two claims that need to be verified. The first, is that the new
solution is part of the feasible set X. The second, is if the new solution obtains
the same objective value as g(λ).

The first claim is trivial, as X is convex, then it is true by definition. The
second claim can be shown to be true as follows:

(c + λp)(µxL + (1− µ)xR)− λB2 (3-23)

=µ((c + λp)xL − λB2) + (1− µ)((c + λp)xR − λB2) (3-24)

=µg(λ) + (1− µ)g(λ) (3-25)

=g(λ) (3-26)

We have validated that the solution is part of the feasible set X and also
that it has the same objective value at g(λ) as the other solutions. We conclude
that any solution of the form µxL + (1− µ)xR, µ ∈ (0, 1) is also a solution to
g at λ, �

To complete the demonstration on how to obtain primal feasibility from
the dual optimal value, we need to show that there exists a µ ∈ (0, 1) such that
the solution µxL + (1−µ)xR satisfies the linear constraint (1-7). To begin, we
state explicitly, g’s subgradient:

dg
dλ(λ) = 〈p,x〉 −B2 (3-27)

Given that, 0 ∈ [dg
dλ(λR), dg

dλ(λL)], and Equation (3-27), it implies the
following:

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 22

〈p,xL〉 > B2 (3-28)

〈p,xR〉 < B2 (3-29)

Proposition 3.5 Let λ∗ be an optimal breakpoint and let xL and xR be
solutions to g(λ∗), such that equations (3-28) and (3-29) hold. Let δL > 0
and δR > 0 be such that:

〈p,xL〉 −B2 = δL (3-30)

B2 − 〈p,xR〉 = δR (3-31)

Then the solution, x∗ obtained from the convex sum:

x∗ = µxL + (1− µ)xR (3-32)

Where µ = δR

δL+δR
, is a primal optimal solution.

Proof.
From Proposition 3.4, we know that any convex sum obtains the same

objective function and satisfy the same constraints. We are left to show that
this new solution, x∗ satisfies constraint (1-7), the linear constraint.

〈p,x∗〉 = 〈p, µxL + (1− µ)xR〉 (3-33)

= µ〈p,xL〉+ (1− µ)〈p,xR〉 (3-34)

= µ(B2 + δL) + (1− µ)(B2 − δR) (3-35)

= B2 − δR + µ(δL + δR) (3-36)

= B2 − δR + δR
δL + δR

(δL + δR) (3-37)

= B2 (3-38)

We’ve found a solution that satisfies all of the original problem’s con-
straints, while maintaining g’s objective value. From the saddle point condition
we have, F (x) = L(x, λ) = g(λ), and thus x∗ is an optimal solution. �

3.6
Problem Feasibility Check

Using the following feasibility check it is possible to determine an interval
Λ that includes all of g’s linear segments. It can be used as a set up for the
weakly polynomial algorithm. The procedure has complexity O(n log n) and so
it does not alter the overall complexity of the weakly polynomial algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 3. Preliminaries 23

Consider the associated weights of each variable as lines, yi(λ) = ci+λpi.
For λ→ −∞, the order, π, of yi(λ) is equivalent to the order of pi. Analogously,
for λ → ∞, the order of yi(λ), is equivalent to the inverse order, π−1, of pi.
In both orders, the elements, yi(λ), have the same neighbours, i.e. if yπ(i)(λ) is
adjacent to yπ(i+1)(λ) in order π, then yπ−1(i)(λ) is also adjacent to yπ−1(i+1)(λ).
Each intersection of lines yi and yj is equivalent to an adjacent swap in the
order π. Therefore, the first and last intersections, λF and λL, are equivalent
to the first and last adjacent swaps.

Let k and l be indices such that at yπ(k)(λF) = yπ(k+1)(λF) and yπ(l)(λL) =
yπ(l+1)(λL). To determine k and l, we sort the variables according to pi, to
obtain the order π. Afterwards, the intersections λπ(i),π(i+1) is calculated for
i ∈ {1, ..., n−1}. Then, we determine the minimum and maximum values, λmin

and λmax. The range [λmin, λmax] includes all intersections of the lines yi, and
thus all linear segments of g.

Problem feasibility is determined by using Algorithm 3.1.1 to solve both
g(λmin) and g(λmax), in order to obtain the subgradients at λmin and λmax. If
the subgradients have opposite signs, then by the Intermediate Value Theorem,
there is a λ∗, with λmin < λ∗ < λmax where there exists a subgradient of
g(λ∗) that is zero. We conclude that the problem is feasible if and only if the
subgradients have opposite signs.

The complexity of the overall feasibility check is O(n log n), due to the
sorting algorithm. Furthermore, by defining Λ = [λmin, λmax], we guarantee to
always find a solution for the weakly polynomial algorithm, if it exists.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

4
Weakly Polynomial Algorithm

In this Chapter, assume that the RAP-LB-L is well-behaved as follows.
For any λ0 such that the costs of two variables are equal, ci +λ0pi = cj +λ0pj,
for i 6= j, i, j ∈ {1, ..., n}, then:

1. There is no k ∈ {1, ..., n}, k 6= i, k 6= j, such that ck + λ0pk = ci + λ0pi.

2. There are also no l, k ∈ {1, ..., i − 1, i + 1, ..., j − 1, j + 1, ..., n}, l 6= k,
such that ck + λ0pk = cl + λ0pl

If we consider the costs to be lines on a plane, then the above two
assumptions are equivalent to having each intersection, among the set of
lines, to occur at unique λ values. An intersection of two lines, is thus,
uniquely characterize by a value λ. If these assumptions are not fulfilled a
small pertubation of the parameters can be applied.

The proposed weakly polynomial algorithm, denoted as WeaklyPoly,
performs a binary search over the dual space, with the aim of finding a solution
that produces a subgradient of zero. The initial search interval, Λ, is assumed
to be closed and large enough to contain all breakpoints of the function g. As
per binary search, at each iteration, the procedure reduces the search interval
by half. The choice of which half to discard is based on the subgradient attained
at the mid point, λM . Considering that in a concave function, such as g, the
gradients are non-decreasing with respect to λ, by obtaining the subgradient
at λM we can update the interval Λ accordingly. Thus, if the subgradient at
the mid-point is positive, we discard the lower half of Λ. Conversely, if the
subgradient at the mid-point is negative, we discard the upper half of Λ.

The setup phase requires to find the order of the weights yi(λ) = ci+λpi,
at both ends of the search interval. At each iteration, the two orders of the
weights yi are determined, one at each end of the search interval Λ. By counting
the inversions between the two orders, we can develop a stopping criteria for
our binary search. Given that our data is well-behaved, we guarantee that a
breakpoint is uniquely characterized by one intersection. Thus, whenever the
count inversions between the two orders is one, we are sure to have only one
breakpoint in the search interval. Given that the solution found on the lower
end of the search interval results in a positive subgradient, and the solution

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 4. Weakly Polynomial Algorithm 25

found on the higher end of the search interval results in a negative subgradient,
we can perform a convex sum to obtain a primal feasible solution. The solution
is then optimal.

We show the algorithm in detail next.

Algorithm 4.0.1: WeaklyPoly
1 Λ← FeasibilityCheck();
2 if Λ = ∅ then
3 return ∅ ;
4 end
5 λL ← min{Λ};
6 λR ← max{Λ};
7 while CountInversion(λL, λR) > 1 do
8 λM ← λL+λR

2 ;
9 x← Greedy(λM);

10 vM ←
∑n
i=1 pixi −B2;

11 if vM > 0 then
12 λL ← λM ;
13 else if vM < 0 then
14 λR ← λM ;
15 else
16 return x;
17 end
18 end
19 xL ← Greedy(λL);
20 xR ← Greedy(λR);
21 x∗ ← ConvexSum(xL,xR);
22 return x∗;

4.1
Correctness and Complexity

The first six lines are part of the setup phase, where the search space
Λ is initiated using the procedure described in Section 3.6. If the problem
is infeasible, we return the empty set, Lines 2 through 4. In Lines 5 and
6, endpoints of Λ are determined. The CountInversion procedure in Line
7 evaluates the weights at λL and λR, i.e. calculates the values yi(λ) = ci+λpi.
It then proceeds to sort them in increasing order, producing two orders, on at
λL and another at λR. The procedure then counts the inversions between the
two lists, and returns the number of inversions.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 4. Weakly Polynomial Algorithm 26

If the problem is trivial, i.e. has zero or one total inversion, then the loop
defined in Lines 7 to 18 is not executed. If there are zero inversions between
the weights evaluated at λL and the ones evaluated at λR, then necessarily,
the problem is trivial (we assume feasibility), and the lines 15 and 16 will both
return the optimal solution x∗. The ConvexSum procedure performs a convex
sum, which will also return the optimal solution.

If there is only one inversion, it implies that there is only one intersection
in the search space. If this intersection does not correspond to a breakpoint,
then the problem is also trivial, as, assuming the problem to be feasible, this
would imply that any solution of g(λ), with λ ∈ Λ is optimal. The loop in Line
7 is not executed, and Lines 19 through 21 return the optimal solution. If the
intersection is a breakpoint, then the solutions xL and xR found in Lines 19
and 20 will not be equal. The procedure ConvexSum in Line 21, is defined by
Proposition 3.5. ConvexSum has as inputs solutions xL and xR, and results
in solution x∗. From Proposition 3.5, we know that x∗ is primal optimal.

If, on the other hand the problem is not trivial, then
CountInversion(λL, λR) > 1, and the loop in Line 7 is executed. Line 8
finds the midpoint, λM , of the search interval, Λ. The solution to g(λM), x,
is obtained in Line 9. We obtain a subgradient in Line 10. We update the
search interval in Lines 11 through 17. If the subgradient vM is positive (Line
11), we discard the left half (Line 12). Analogously, we update the search
interval accordingly, if the subgradient is negative (Lines 13 and 14). If the
subgradient, vM is zero, then by Property 3.2, x is primal optimal, and Line
16, returns the optimal solution.

At each iteration Algorithm 4.0.1 guarantees that g(λL) will always have
a positive subgradient, and g(λR) will always have a negative subgradient.
The iterations stops if either one has zero subgradient and returns the optimal
solution. If the loop terminates without returning an optimal solution, then it
implies there is only one intersection (Line 7). The opposing signs of g(λL) and
g(λR) subgradients guarantees that the intersection is a breakpoint. Thus, by
Proposition 3.5, the convex sum of the solutions at the endpoints, xL and xR
is primal optimal.

The complexity of the while loop is as follows. The while loop runs a
binary search on the interval Λ. In the worst case, the loop terminates when
CountInversions(λL, λR) > 1. This only happens when there is only one
intersection in the interval (λL, λR). Let us denote Ik as the interval where
each linear segment of g is defined on, and let I be the smallest one, nameley
|I| 6 |Ik|. Then, whenever the search interval becomes smaller than I, the loop
terminantes, as there necessarily cannot be another breakpoint in the search

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 4. Weakly Polynomial Algorithm 27

interval. Therefore, the loop iterates a total of O(log |Λ||I|) time.
In each iteration the greedy and count inversions procedures are executed

once. As shown in Algorithm 3.1.1, the greedy procedure takes O(n) time.
Calculating the subgradient can be performed in linear time. It is known
that the count inversions algorithm can be implemented in O(n log n) time.
Therefore, each iteration of the while loop, we perform O(n log n) steps.
Combining with the iterations of the while loop, we obtain the complexity
O(n log n log |Λ||I|) for our algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

5
Strongly Polynomial Algorithm

In this Chapter we first describe the general framework for the parametric
search using the example first exposed in (Megiddo1983). We then show how
to apply the general framework to our own problem. Finally we discuss the
complexity and prove its correctness.

5.1
Parametric Search

Parametric search is a technique to design efficient sequential algorithms
from parallel algorithms. The parallel algorithm is simulated on a sequential
machine and efficiency is gained by optimizing the simulation, we refer to
(Megiddo1983), (Cole1987), and (Goodrich2013) for additional explanations.

Given a decision problem B that we wish to solve, there are three
requirements that need to be met for the technique to be applicable. We denote
these requirements as Parametric Search Requirements (PSR).

1. The decision problem B must depend monotonically on a parameter λ,
such that it is true in an interval (−∞, λ∗] and false every where else.

2. There must exist a sequential algorithm C that can determine whether
if, for a given λ, it is less than, equal to, or greater than λ∗.

3. A choice of a generic, comparison based, parallel algorithm A that is
independent of the parameter λ.

The goal of the parametric search is to find the largest λ such that B is
true, i.e. find λ∗. The idea is to use the parallel algorithm A that runs in time
T on a machine with P processors, to design a serial algorithm that solves the
problem B in time T logP .

To achieve this, the parallel algorithm A is executed on the unknown
value λ∗, either as its input, or on inputs that depend on λ∗. Since A is
comparison based, whenever a comparison needs to be resolved, it relies on
C to solve it. The result of this scheme is that the value λ∗ is found as a
by-product. Once found, B is solved.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 29

Note that the problem that algorithm A solves is not decision problem
B. The sequential algorithm C is used to bridge the gap between the problem
that algorithm A solves and the decision problem B. This way, algorithm C
ties the execution of algorithm A to solving problem B.

Consider the following example from (Megiddo1983): There are n func-
tions fi of the form fi(λ) = ai + λbi, i ∈ [n], such that the functions fi are
pairwise distinct and all bi’s are positive. Let F (λ) be a function such that
F (λ) = median{f1(λ), f2(λ), ..., fn(λ)}. It is clear that F (λ) can be solved in
O(n) time with the median-finding algorithm and is a monotonic increasing,
piecewise linear function with O(n2) breakpoints. The goal is to find λ, such
that F (λ) = 0. We denote λ∗ such that F (λ∗) = 0.

A straight forward algorithm can be implemented that enumerates all
O(n2) breakpoints and performs a binary search. At each iteration of the binary
search, the median breakpoint, i.e. the intersection λij of two lines fi(λ) and
fj(λ) is selected, and F (λij) is solved. If F (λij) < 0 then λij < λ∗, likewise if
F (λij) > 0 then λij > λ∗. At the end of the binary search, the search interval
will be (λst, λkl). Since there are no breakpoints in the final search interval,
F (λ) is linear in (λst, λkl), and the solution to F (λ) = 0 can be found in one
step. This algorithm takes O(n2) time to enumerate all of the breakpoints,
and then O(log n) iterations of solving F (λ) resulting in a total complexity of
O(n2).

In order to improve the complexity, we employ the parametric search
technique. The first PSR can be satisfied by considering the decision problem
B to be: "Is λ such that F (λ) 6 0?". The second PSR is satisfied by using
the following procedure as algorithm C: For a given λ, solve F (λ) and looks at
its sign, if F (λ) < 0 return λ < λ∗, if F (λ) = 0 return λ = λ∗, and finally, if
F (λ) > 0 return λ > λ∗. The third PSR is satisfied by using the parallel sorting
algorithm AKS (Ajtai1983). The AKS algorithm uses P = O(n) processors at
each time step and takes a total of T = O(log n) time. Each processor is used
to resolve a comparison between two functions. The inputs to algorithm A are
the functions {f1(λ∗), f2(λ∗), ..., fn(λ∗)} evaluated at the unknown value λ∗.

Whenever algorithm A compares two functions fi and fj, the equation
fi(λ) = fj(λ) is solved which finds the breakpoint λij. Thus after one time
step of the parallel algorithm, we have P breakpoints, which were all produced
independently of each other. We do not assume that the P breakpoints are
sorted. Let these values be λ1 6 λ2 6 ... 6 λP . We optimize the simulation of
A by using algorithm C to perform a binary search on the P breakpoints.
The end result is a reduction of our search interval to (λi, λi+1) for some
i ∈ [P], such that λ∗ ∈ (λi, λi+1). To summarize, one iteration of the whole

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 30

algorithm includes simulating one parallel step of algorithm A producing P
breakpoints followed by using C to perform a binary search to completion on
the P breakpoints. After all iterations of A are executed, we are guaranteed
to have an interval, (λk, λk+1), for some k ∈ [O(n2)] where F (λ) is linear in
the interval. The solution to F (λ) = 0 can then be found in constant time.

Algorithm C runs in O(n) time, and the binary search has a total of
O(logP) iterations, therefore the binary search takes O(n logP) time. The
sorting algorithm has O(log n) steps and thus the total complexity of the
algorithm is O(n logP log n), a significant improvement from O(n2).

5.2
Parametric Search Applied to RAP-LB-L

As described in Chapter 3, the breakpoints happen whenever the weight
associated to two variables xi and xj are equal, i.e. ci + λpi = cj + λpj. If we
consider each weight to define a line on the dual space, the breakpoints occur
at the intersection of the lines.

It is important though, to note that not all intersections are breakpoints.
Consider the LR of the following RAP-LB-L, with B2 = 0, no nested
constraints and B1 = 10:

min
x

(5− λ)x1 + (5 + 2λ)x2 + (−2 + 6λ)x3 (5-1)
Figure 5.1 illustrates the example. The intersections of the lines, y1 =

5 − λ, y2 = 5 + 2λ, and y3 = −2 + 6λ, occur at values λ1 = 0, λ2 = 1 and
λ3 = 2. Lines y1 and y2 intersect at λ = λ1, however, it does not affect the
value of the objective function, as all resource is allocated to variable x3. At
the following intersection, λ2, the resource is allocated to x2 and x3 is set to
zero.

Figure 5.1: Lines y1, y2, and y3 and their intersections at λ1, λ2, λ3.

In this regard, the LR of RAP-LB-L does not necessarily have only one
intersection that is dual optimal.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 31

We assume that there does not exist a i and j, such that ci = cj and
pi = pj. If it does, we remove the variable belonging to the smallest of the
nested sets, i.e. if i ∈ J1 and j ∈ J2 such that J1 ⊂ J2, then we remove xi. This
does not affect the problem as any resource allocated to xi can be absorbed by
xj without affecting the objective function or the subgradient. After solving to
optimality, any allocation between xi and xj is trivially optimal as well.

Applying the parametric search technique to our problem requires to
first, satisfy the PSR. The first PSR is satisfied by considering the following
decision problem B: "Is the subgradient of g evaluated at λ greater or equal
to zero?", i.e. deciding whether ∂g(λ) > 0 is true or not. The second PSR is
satisfied by choosing the AKS sorting network as algorithm A. For now, we
will assume that there exists an algorithm C that satisfies the third PSR. The
details of algorithm C will be postponed to the next section.

Similar to what was described in Section 5.1, the execution of the overall
algorithm is as follows: We simulate the execution of the AKS algorithm on
the inputs {y1(λ∗), y2(λ∗), ..., yn(λ∗)} on a serial machine. At each parallel
step, each processor of the AKS compares two values yi(λ∗) and yj(λ∗) which
results in finding the intersection λij such that yi(λij) = yj(λij). As such,
each simulated parallel step of the AKS algorithm results in P intersections. A
binary search is then employed, using the median-finding algorithm to select
λM , followed by the execution of algorithm C to determine whether λM < λ∗,
λM > λ∗, or λM = λ∗. By the same reasoning used before, we’re able to reduce
the search interval after each iteration of the AKS sorting network.

Figure 5.2a illustrates the comparisons made by each processor at it-
eration t of the AKS sorting network. The figure shows that each processor
compares different pairs of lines. Each processor finds the intersection of the
two lines they are comparing and adds them to the batch. In figure 5.2b,
illustrates the binary search process over the set of values produced by the
processors.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 32

(a) Each processor produces a value
and adds it to a batch.

(b) Binary search process over the
produced values.

Figure 5.2: Illustration of each step of the simulation of one parallel step of
AKS sorting network.

If C(n) is the running time of algorithm C, then the binary search runs
in O(C(n) logP) time. One simulated iteration of the AKS sorting network
takes O(P + C(n) logP) time, where O(P) is the time taken to simulate the
comparisons made by all processors. Given than the AKS sorting network uses
P = O(n) processors at each iteration and runs a total of O(log n) iterations,
the overall complexity of the algorithm is O((n+ C(n) log n) log n).

5.3
Sequential Algorithm C

The sequential algorithm C finds two solutions, xL and xR, for g at
intersection λij of the lines li : yi = ci + λpi and lj : yj = cj + λpj. The
solutions are such, that the generated subgradients are the smallest and largest.
If the subgradients obtained from xL and xR have opposite signs, then a
third solution, x∗, to g(λij) is obtained through the convex sum detailed in
Proposition 3.5. The obtained solution x∗ is then optimal and yi(λ∗) = yj(λ∗)
is returned. If the subgradients obtained from xL and xR have the same sign,
then the subgradient of xL is used to determine whether yi(λ∗) > yj(λ∗) or
yi(λ∗) < yj(λ∗). It is worth mentioning that in this case, if intersection λij

is not a breakpoint, then the subgradients, vL and vR are equal, and both
solutions are equal to each other.

Next, we illustrate algorithm C in detail. We assume w.l.o.g. that the
gradients of the lines li and lj are such that pi > pj.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 33

Algorithm 5.3.1: C(li, lj)
1 λij ← intersection of lines li and lj;
2 xL,xR ←ModifiedGreedy(λij) ;
3 vL ← 〈p,xL〉 −B2;
4 vR ← 〈p,xR〉 −B2;
5 if vL × vR 6 0 then
6 x∗ ← ConvexSum(xL,xR) ;
7 return yi(λ∗) = yj(λ∗);
8 end
9 if vL < 0 then

10 return yi(λ∗) > yj(λ∗);
11 end
12 if vL > 0 then
13 return yi(λ∗) < yj(λ∗);
14 end

As described before, Line 2 returns two solutions from W (λij), who’s
subgradients at g(λij) are the maximum and minimum possible. In Lines 3
and 4, the subgradient with respect to each solution is calculated. In Line 5
we check whether the subgradients have the same sign or not by checking their
product. If the product is negative, then they have different signs which implies
that 0 ∈ ∂g(λij). If the product is zero, then either one or both subgradients
is zero. Either case, the convex sum returns us a third solution (Line 6) x∗

at g(λij) as shown in Proposition 3.5. The convex sum, guarantees us that
the subgradient of x∗ at g(λij) is zero, and thus by Proposition 3.5, x∗ is
optimal, and C returns that yi(λ∗) = yj(λ∗). If, on the other hand, the product
is positive, we’re not at the dual optimal. We then use the subgradient vL to
determine whether Algorithm C returns yi(λ∗) > y(λ∗) (if vL < 0, Line 9) or
yi(λ∗) < y(λ∗) (if vL > 0, Line 12).

Before discussing the complexity of C, we show how the modified greedy
procedure finds the solutions.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 34

Algorithm 5.3.2: ModifiedGreedy(λ)
1 Sm+1 ← ∅;
2 J0 ← ∅;
3 xL ← 0 ;
4 xR ← 0 ;
5 for k ← m to 1 do
6 ∆← bk − bk−1;
7 Sk ← arg min

i
{ci + λpi| i ∈ (Jk − Jk−1) ∪ Sk+1};

8 iL ← arg max
i
{pi| i ∈ Sk};

9 iR ← arg min
i
{pi| i ∈ Sk};

10 xiL ← xiL + ∆;
11 xiR ← xiR + ∆;
12 Sk ← {iL, iR};
13 end

The values bk are the upper nested constraints, where bm = B1. Given
our assumption that bk > bk−1, the allocation of resources to variables in
Jk−1 is limited to bk−1. Thus, the amount bk − bk−1 of resource can only be
allocated to variables in Jm that are not in Jk−1. In each iteration, we retain
the indices of minimum weight of Jm − Jk−1 (Line 5). Lines 6 and 7 chooses
the index that would have a lower cost, if λ was marginally lower (Line 6) and
marginally greater (Line 7) than λij, even though at the intersection λij, the
weights are equal, ci + λpi = cj + λpj. However, if λ < λij, and pi > pj, then
ci + λpi < cj + λpj. The order of the lines before and after an intersection
is uniquely determined by the order of their gradients, namely pi and pj.
The situation is analagous for λ > λij. Lines 8 and 9 allocate resource to
the solutions appropriately. We update the minimum variables in Line 10 to
prepare for the next iteration.

If, on the other hand, the intersection λij is not a breakpoint, then both
solutions xL and xR are equal.

The modified greedy procedure finds two solutions to g(λ) in O(n) time.
The minimum of a set K can be determined in O(|K|). At each iteration
of the loop, we determine the minimum element of the set Jk − Jk−1, for a
k ∈ {1, ...,m}. The collection of sets Jk − Jk−1 form a partition of the set
Jm = {1, ..., n}. As such, the procedure iterates over the set Jm, resulting in a
total of O(n) operations.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 35

5.4
Complexity and Improvement

Clearly, Lines 3, 4 and 6 take O(n) time. Coupled with the linear
complexity of the modified greedy procedure, we conclude that our algorithm
C takes O(n) time. Therefore the overall complexity of the strongly polynomial
algorithm is O(n log2 n). This result can be improved by utilizing (Cole1987)’s
improvement of the parametric search. The improvement is specific to the cases
of parametric search where the problem that algorithm A solves is sorting.

In the paper, Cole used the AKS sorting network to show the results.
The key insight made by Cole is the observation of the inefficiency of running
a binary search to completion at each iteration of the simulated parallel step
of algorithm A. The framework of Megiddo has a clear distinction of the two
processes involved in the overall algorithm. The first process is the simulation of
a parallel step of algorithm A. The second process is running the binary search
to completion on the values given by the first process.a Megiddo’s parametric
search can then be seen as successive alternating between process one and
process two.

In Cole’s improvement, however, these two processes are intertwined.
Cole observed that after each iteration of the binary search, new comparisons
are enabled. Comparisons, that will only appear in later batches. Therefore,
after each iteration of the binary search, the newly enabled comparisons are
added to the current batch, before continuing on with the binary search.
This way, the binary search is able to operate over multiple batches before
terminating.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 5. Strongly Polynomial Algorithm 36

Figure 5.3: Cole’s improvement

Figure 5.3 illustrates the updated algorithm with Cole’s improvement.
With Cole’s improvement, the first iteration of algorithm A, where the com-
parison values λ are produced, is simulated as previously described, without
alterations. The binary search is then iterated once. This iteration includes,
selecting the median and using it as input to C, and then solving half of the
batch. Before proceeding to the next iteration, however, Cole’s improvement
gets new comparisons that were enabled and add the corresponding values to
the current batch.

Technical details of Cole’s improvement were omitted in order to simplify
the exposition. We refer to (Cole1987) for a complete description of the
improvement.

Cole showed that with this modification, a factor of O(log n) can be
removed from the overall complexity. This allows us an improvement to
O(n log n) from O(n log2 n), as desired.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

6
Implementation

We ran computational experiments to compare the performance of the
proposed algorithms to the IP method. The choice of the IP method as a a
benchmark is due to the lack of a dedicated algorithm to solve the RAP-LB-L.
The implementation of the weakly polynomial algorithm is the same as defined
in Chapter 4.

The AKS sorting network is required for the strongly polynomial algo-
rithm. However, its implementation is complicated and, furthermore, it also
has a large constant factor in its computational complexity. For these reasons,
we chose to use a different sorting algorithm for the strongly polynomial al-
gorithm implementation. We followed the work done by (vanOostrum2004).
The authors use quicksort instead of the AKS sorting network, choosing the
first element of the array as the pivot element. Quicksort’s average complexity
of O(n log n) makes this implementation practical, albeit at a worse theoreti-
cal complexity. The theoretical worse-case complexity of the strongly polyno-
mial implementation is therefore O(n2 log n), with an average complexity of
O(n log2 n).

It is not possible to attain an average complexity of O(n log n) with
quicksort, as seen in (vanOostrum2004). This is due to the inability of applying
the optimization of (Cole1987) when using quicksort. In quicksort, the batch
of comparisons are the comparisons of each element of the set to the pivot. In
order to obtain the next batch, a new pivot needs to be chosen. The choice
of the new pivot is only possible after partitioning the elements into two sets,
one set where every element is less than the pivot, and another set where
every element is greater than the pivot. Thus, all comparisons of one batch
needs to be resolved before proceeding to the next batch. This makes Cole’s
optimization not possible to implement.

However, (Goodrich2013) developed a parametric search framework that
has the same complexity as (Cole1987) with high probability. The AKS sorting
network is substituted with the box sort, and the weight assignment is modified
to accomodate the changes. Due to the complexity of managing the weights of
different comparisons, we implemented the quicksort as algorithm A.

Before running the weakly polynomial algorithm on the problem in-

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 6. Implementation 38

stances, the O(n log n) feasibility check procedure was used to calculate the
interval Λ.

6.1
Problem Instances

The algorithms were implemented in C++ and run on a single core of
Intel i5 2.6GHz CPU. For problem instances where a run took less than one
second, they were repeated a total of 100 times. For runs that took less than a
minute but longer than a second, they were repeated a total of 10 times. For
runs that took longer than a minute, they were only run once. The average
time was determined for each problem instance. The number of variables of the
instances are n ∈ {10, 20, 50, 100, 200, 500, 1000, ..., 106}. For each problem size,
10 different instances were randomly generated. Every problem instance has
the same number of nested constraints as decision variables. The experiments
were run on three different sets of problem instances: Uniform, Increasing, and
Decreasing. The first, are the original ones used in (Vidal2018), with extended
parameters.

We refer to (Vidal2018) for a more detailed explanation on the generation
of parameters. The weights ci were generated randomly in the range [0, 1]. The
parameters li and ui, generated in (Vidal2018), were used to generate the
upper nested constraints as follows: First, a sequence of values vi and wi were
generated, where v0 = w0 = 0, vi = vi−1 + Xv

i , and wi = wi−1 + Xw
i . The

parameters Xv
i and Xw

i were generated from a uniform distribution, U(li, ui)
for i ∈ {1, ..., n}. Finally, the sequence is used to obtain the upper nested
constraint, bi = max{vi, wi}.

For the Decreasing and Increasing problem set, the weights ci were
generated in the range [0, 1] and a parameter αi was uniformly generated
in the range [0, 0.5], for i ∈ {1, ..., n}. For the Increasing problem set, the
parameters αi were sorted in increasing order and for the Decreasing problem
set, the paramters αi were sorted in decreasing order. For both problem sets,
the upper nested constraints were obtained as follows: bi = bi−1 +αi, where we
define b0 = 0.

The parameters for the linear constraints, pi, were randomly generated
from a uniform distribution in [−1, 1]. Afterwards, the parameter B2 was ran-
domly generated from a uniform distribution in the range [B1×min{pi}, B1×
max{pi}]. This however does not guarantee problem feasibility. In case the
resulting problem is infeasible, according to the feasibility check described in
Section 3.6, B2 is regenerated.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 6. Implementation 39

6.2
Results

Figure 6.1: Average Time(s) v.s. Input Size(n) of uniformly generated nested
constraints. T-Weakly: ×. T-Strongly: +. T-Mosek: �.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 6. Implementation 40

Figure 6.2: Average Time(s) v.s. Input Size(n) of decreasing nested constraints.
T-Weakly: ×. T-Strongly: +. T-Mosek: �.

Figure 6.3: Average Time(s) v.s. Input Size(n) of increasing nested constraints.
T-Weakly: ×. T-Strongly: +. T-Mosek: �.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 6. Implementation 41

CPU Time(s)
n Weakly Strongly MOSEK
10 1.41× 10−4 7.28× 10−5 8.88× 10−3

20 4.88× 10−4 1.52× 10−4 1.20× 10−2

50 1.58× 10−3 4.39× 10−4 1.36× 10−2

100 3.69× 10−3 1.00× 10−3 2.04× 10−2

200 9.95× 10−3 2.80× 10−3 7.86× 10−2

500 3.00× 10−2 6.87× 10−3 1.24
1, 000 6.31× 10−2 1.92× 10−2 1.24× 10
2, 000 1.41× 10−1 4.86× 10−2 1.39× 102

5, 000 4.25× 10−1 2.13× 10−1 –
10, 000 9.71× 10−1 4.43× 10−1 –
20, 000 2.11 5.22× 10−1 –
50, 000 5.69 1.10 –
100, 000 1.26× 10 3.70 –
200, 000 2.65× 10 6.34 –
500, 000 7.54× 10 1.72× 10 –

1, 000, 000 1.64× 102 7.29× 10 –

Table 6.1: Average CPU time for experiments from uniform data

CPU Time(s)
n Weakly Strongly MOSEK
10 6.24× 10−4 7.57× 10−5 1.28× 10−2

20 3.88× 10−3 1.51× 10−4 1.21× 10−2

50 1.69× 10−3 3.83× 10−4 1.36× 10−2

100 4.12× 10−3 1.19× 10−3 2.15× 10−2

200 9.35× 10−3 2.44× 10−3 8.05× 10−2

500 3.20× 10−2 7.88× 10−3 1.70
1000 6.96× 10−2 2.03× 10−2 1.58× 10
2000 1.57× 10−1 4.96× 10−2 1.58× 102

5000 4.18× 10−1 1.76× 10−1 –
10000 9.49× 10−1 2.91× 10−1 –
20000 2.08 8.30× 10−1 –
50000 5.86 1.69 –
100000 1.28× 10 7.51 –
200000 2.86× 10 1.45× 10 –
500000 7.60× 10 3.20× 10 –
1000000 1.62× 102 1.50× 102 –

Table 6.2: Average CPU time for experiments from decreasing data

In all of the problem sets, the results suggests that both weakly and
strongly polynomial algorithms outperform MOSEK’s IP method. Though the
results cannot attest to the proposed algorithms accuracy for larger input
size (n > 2000), both strongly and weakly polynomial algorithms obtained the
same exact answers throughout all of the experiments. The strongly polynomial

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 6. Implementation 42

CPU Time(s)
n Weakly Strongly MOSEK
10 2.42× 10−4 7.73× 10−5 2.58× 10−4

20 5.87× 10−4 1.58× 10−4 1.89× 10−4

50 1.85× 10−3 4.82× 10−4 3.15× 10−4

100 3.92× 10−3 1.01× 10−3 8.92× 10−4

200 9.59× 10−3 2.35× 10−3 8.87× 10−3

500 2.82× 10−2 8.22× 10−3 1.32× 10−1

1000 6.91× 10−2 2.42× 10−2 1.10
2000 1.53× 10−1 5.24× 10−2 1.96× 10
5000 4.35× 10−1 1.62× 10−1

10000 9.02× 10−1 3.05× 10−1 –
20000 2.13 7.05× 10−1 –
50000 5.67 2.52 –
100000 1.24× 10 1.74 –
200000 2.74× 10 1.28× 10
500000 7.92× 10 3.81× 10 –
1000000 1.74× 102 8.49× 10 –

Table 6.3: Average CPU time for experiments from increasing data

algorithm is more efficient than the weakly polynomial. Furthermore, the
running time of the strongly polynomial algorithm, is highly volatile for larger
input sizes, as shown for n > 10, 000, where the standard deviation is at least
the same order of magnitude as the average running time. This could be due to
quicksort’s worst time complexity of O(n2). Moreover, the strongly polynomial
algorithm doesn’t always run the sorting of quicksort to completion. If an
optimal solution is found before the end of quicksort, the algorithm terminates
and returns the solution.

It is worth noting that although the average running times of the
strongly polynomial algorithm were superior to that of the weakly polynomial
algorithm, there were instances where both algorithms had similar running
times. What set the strongly algorithm apart from the weakly algorithm are
the instances that were solved at a fraction of the weakly’s running time. This
is reflected on the standard deviation of the strongly polynomial algorithm
running times.

The running times of the weakly polynomial algorithm, can be modelled
by a function T (n) = O(n log n). This is likely due to the way the data
was generated. Since the weights and linear constraint terms were generated
in a fixed range, ci ∈ [0, 1] and pi ∈ [−1, 1], it limited the range between
the minimum intersection and maximum intersection. Given that we ran the
feasibility check to obtain Λ prior to running the weakly polynomial algorithm,
it is expected that the factor O(log Λ) remained roughly constant throughout

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Chapter 6. Implementation 43

the experiment. This effectively resulted in a practical O(n log n) complexity
for the weakly polynomial algorithm.

Furthermore, there are no significant differences in running times among
the problem sets. The Increasing and Decreasing problem sets, have a similar
upper nested constraint structure, i.e. the distance between the upper nested
limits are monotonic. This additional structure did not benefit nor hinder the
algorithms running time, as all three algorithms had similar running times
across all problem sets.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

7
Conclusion

We have proposed both a weakly and strongly polynomial algorithm with
complexity O(n log n log |Λ|) and O(n log n) respectively. It is a dual approach,
where the dual space is searched for the optimal dual solution. While the
weakly polynomial algorithm uses binary search on an interval defined in
dual space, the strongly polynomial algorithm utilizes the search procedure
developed for the SSP to search over the breakpoints of LR. Our experimental
results highlights a significant improvement upon the general IP method.

More research is necessary to adapt the linear time count inversion
approximation, developed by (Cole1989), to the weakly polynomial algorithm.
If possible, this could reduce the current complexity of O(n log n log |Λ|) to
O(n log |Λ|). An implementation of (Goodrich2013) practical framework of
parametric search to our problem could provide a more efficient algorithm
in practice, as well as reduce the running time volatility observed in our
experiment.

A straightforward extension of the methods developed here could allow
to solve a more general class of problems, namely by introducing lower nested
constraints and box constraints on the variables. In this regard, Algorithm
3.1.1 should be substituted by a variant of the decomposition algorithm of
(Vidal2018). The dual search in both weakly and polynomial algorithms would
remain the same. This would result in complexity O(n log n log |Λ||I|) for the
weakly polynomial algorithm and O(n log n logm) for the strongly polynomial
algorithm, with O(n log2 n logm) for the implementation used here.

In regards to a more general objective function, it is not clear whether
the approach described here using parametric search is adequate for the RAP-
LB-L with a quadratic objective function. This is due to the necessity of the
technique to be monotonically dependent on the dual parameter λ. In the
quadratic case, the breakpoints would also depend on how much resource is
allocated to each variable. As for the weakly polynomial approach described,
it was based on the assumption that each breakpoint had one and only one
intersection. An analogous assumption would be required for the quadratic
case, where the multiplicity of the intersections need to be considered.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Bibliography

[Agarwal1994] AGARWAL, P.; SHARIR, M. ; TOLEDO, S.. Applications
of parametric searching in geometric optimization. Journal of
Algorithms, 17(3):292 – 318, 1994.

[Agarwal1998] AGARWAL, P. K.; SHARIR, M.. Efficient algorithms for
geometric optimization. ACM Comput. Surv., 30(4):412–458, Dec. 1998.

[Ajtai1983] AJTAI, M.; KOMLÓS, J. ; SZEMERÉDI, E.. An o(n log n) sorting
network. In: PROCEEDINGS OF THE FIFTEENTH ANNUAL ACM
SYMPOSIUM ON THEORY OF COMPUTING, STOC ’83, p. 1–9, New York,
NY, USA, 1983. ACM.

[Akhil2014] AKHIL, P. T.; SINGH, R. ; SUNDARESAN, R.. A polymatroid
approach to separable convex optimization with linear ascend-
ing constraints. In: 2014 TWENTIETH NATIONAL CONFERENCE ON
COMMUNICATIONS (NCC), p. 1–5, Feb 2014.

[Anstreicher1999] ANSTREICHER, K.. Linear programming in
o((n3/ log n)l) operations. SIAM Journal on Optimization, 9(4):803–812,
1999.

[Brucker1984] BRUCKER, P.. An o(n) algorithm for quadratic knapsack
problems. Operations Research Letters, 3(3):163 – 166, 1984.

[Brönnimann1998] BRÖNNIMANN, H.; CHAZELLE, B.. Optimal slope selec-
tion via cuttings. Computational Geometry, 10(1):23 – 29, 1998.

[Chazelle1992] CHAZELLE, B.; EDELSBRUNNER, H.; GUIBAS, L. ; SHARIR,
M.. Diameter, width, closest line pair, and parametric searching.
In: PROCEEDINGS OF THE EIGHTH ANNUAL SYMPOSIUM ON COMPU-
TATIONAL GEOMETRY, SCG ’92, p. 120–129, New York, NY, USA, 1992.
ACM.

[Chemla2013] CHEMLA, D.; MEUNIER, F. ; CALVO, R. W.. Bike sharing sys-
tems: Solving the static rebalancing problem. Discrete Optimization,
10(2):120 – 146, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Bibliography 46

[Coelho2014] COELHO, L. C.; CORDEAU, J.-F. ; LAPORTE, G.. Thirty years
of inventory routing. Transportation Science, 48(1):1–19, 2014.

[Cole1987] COLE, R.. Slowing down sorting networks to obtain faster
sorting algorithms. J. ACM, 34(1):200–208, Jan. 1987.

[Cole1989] COLE, R.; SALOWE, J. S.; STEIGER, W. L. ; SZEMERÉDI, E..
An optimal-time algorithm for slope selection. SIAM Journal on
Computing, 18(4):792–810, 1989.

[D’Amico2014] D’AMICO, A. A.; SANGUINETTI, L. ; PALOMAR, D. P.. Con-
vex separable problems with linear constraints in signal pro-
cessing and communications. IEEE Transactions on Signal Processing,
62(22):6045–6058, Nov 2014.

[Goodrich2013] GOODRICH, M. T.; PSZONA, P.. Cole’s parametric search
technique made practical. CoRR, abs/1306.3000, 2013.

[Hartl2016] HARTL, R. F.; ROMAUCH, M.. Notes on the single route lat-
eral transhipment problem. Journal of Global Optimization, 65(1):57–
82, May 2016.

[Hochbaum1994] HOCHBAUM, D. S.. Lower and upper bounds for the
allocation problem and other nonlinear optimization problems.
Math. Oper. Res., 19(2):390–409, May 1994.

[Ibaraki1988] IBARAKI, T.; KATOH, N.. Resource Allocation Problems:
Algorithmic Approaches. MIT Press, Cambridge, MA, USA, 1988.

[Karmarkar1984] KARMARKAR, N.. A new polynomial-time algorithm
for linear programming. Combinatorica, 4(4):373–395, Dec 1984.

[Katz1993] KATZ, M. J.; SHARIR, M.. Optimal slope selection via ex-
panders. Information Processing Letters, 47(3):115 – 122, 1993.

[Lubotzky2012] LUBOTZKY, A.. Expander graphs in pure and applied
mathematics. Bulletin of the American Mathematical Society, 49(1):113–
162, may 2012.

[Megiddo1981] MEGIDDO, N.. An application of parallel computation to
sequential computation: the problem of cost-effective resource
allocation. Technical Report TWISK 202, National Research Institute for
Mathematical Sciences, Council for Scientific and Industrial Research (CSIR),
Pretoria, South Africa, March 1981.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Bibliography 47

[Megiddo1983] MEGIDDO, N.. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM, 30(4):852–865,
Oct. 1983.

[Megiddo1984] MEGIDDO, N.. Linear programming in linear time when
the dimension is fixed. J. ACM, 31(1):114–127, Jan. 1984.

[Megiddo1993] MEGIDDO, N.; TAMIR, A.. Linear time algorithms for
some separable quadratic programming problems. Operations
Research Letters, 13(4):203 – 211, 1993.

[Patriksson2008] PATRIKSSON, M.. A survey on the continuous nonlinear
resource allocation problem. European Journal of Operational Research,
185(1):1 – 46, 2008.

[Patriksson2015] PATRIKSSON, M.; STRÖMBERG, C.. Algorithms for the
continuous nonlinear resource allocation problem?new imple-
mentations and numerical studies. European Journal of Operational
Research, 243(3):703 – 722, 2015.

[Ravi1996] RAVI, R.; GOEMANS, M. X.. The constrained minimum span-
ning tree problem. In: Karlsson, R.; Lingas, A., editors, ALGORITHM
THEORY — SWAT’96, p. 66–75, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[Reischuk1985] REISCHUK, R.. Probabilistic parallel algorithms for sort-
ing and selection. SIAM Journal on Computing, 14(2):396–409, 1985.

[Renegar1987] RENEGAR, J.. On the worst-case arithmetic complexity
of approximating zeros of polynomials. Journal of Complexity, 3(2):90
– 113, 1987.

[Rockafellar1993] ROCKAFELLAR, R.. Lagrange multipliers and optimal-
ity. SIAM Review, 35(2):183–238, 1993.

[Sen1968] SEN, P. K.. Estimates of the regression coefficient based
on kendall’s tau. Journal of the American Statistical Association,
63(324):1379–1389, 1968.

[Vidal2016] VIDAL, T.; JAILLET, P. ; MACULAN, N.. A decomposition
algorithm for nested resource allocation problems. SIAM Journal
on Optimization, 26(2):1322–1340, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Bibliography 48

[Vidal2018] VIDAL, T.; GRIBEL, D. ; JAILLET, P.. Separable convex op-
timization with nested lower and upper constraints. INFORMS
Journal on Optimization, Articles in Advance, 2018.

[vanOostrum2004] VAN OOSTRUM, R.; VELTKAMP, R. C.. Parametric
search made practical. Computational Geometry, 28(2):75 – 88, 2004.
Special Issue on the 18th Annual Symposium on Computational Geometry -
SoCG2002.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

A
Proof of W (λ) being Convex

The set W (λ) is the set of solutions that solve the piecewise-linear
concave function g defined in Section 3.3, at a value λ. If λ is not a breakpoint,
then W (λ) is a single point, and it is trivially convex. As such, we assume that
λ is a breakpoint. Then, there exists at least one set of variables K1 such that
their respective weights, ci + λpi, for i ∈ K1 are all equal.

Due to λ being a breakpoint, there is an amount of resource ∆j that must
be allocated among the |Kj| variables. Any such allocation does not change
the value of the objective function, as they each have equal weights among
them. Therefore every point, x in W (λ) must respect the following constraint:

∑
k∈Kj

xk = ∆j (A-1)

This implies that if x ∈ W (λ), then x satisfies the set of equations (A-
1). It also implies that there are stationary variables in W (λ), such that if
i /∈ ∪jKj, then xi has the same value for any x ∈ W (λ).

Finally, given two points a,b ∈ W (λ), then we show that c = µa+ (1−
µ)b ∈ W (λ), for µ ∈ (0, 1).

We separate the variables into two disjoint sets and treat them separately:
The set ∪jKj and the set Q = [n] − ∪jKj. For any stationary i ∈ Q, ai = bi,
for any i ∈ ∪jKj, then:

∑
k∈Kj

µak + (1− µ)bk (A-2)

⇔µ
∑
k∈Kj

ak + (1− µ)
∑
k∈Kj

bk (A-3)

⇔µ∆j + (1− µ)∆j = ∆j (A-4)

Given that the same amount of resource, ∆j is allocated to each set of
variables Kj and c has the same stationary variables as a and b, we conclude
that c ∈ W (λ), W (λ) is convex, as desired.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

B
Optimal Breakpoint

Here we show that there is at least one breakpoint of g that is optimal. We
begin by noting that the definition of subgradients imply that, at a breakpoint,
λ, of g, the subgradient is either a point or an interval. This and a stronger
assertion is given in the following proposition.

Proposition B.1 If g is a piecewise-linear concave function, the slope of the
two adjacent lines of a breakpoint define the subdifferential at the breakpoint.

The proof is detailed in Appendix B.1. With the subdifferential’s interval
clearly determined, we show the sufficient conditions for a breakpoint to be
optimal. Namely, if λi is the i-th breakpoint of g, then it is optimal if the
following inequalities are true.

dgL
dλ (λi) > 0 (B-1)
dgR
dλ (λi) 6 0 (B-2)

(B-3)

The conditions follow from Proposition B.1 and Property 3.2. From
Property 3.2, 0 ∈ ∂g(λ∗). From Proposition B.1, ∂g(λi) = [dgR

dλ (λi), dgL

dλ (λi)]. It
follows that if λi is optimal, then 0 ∈ ∂g(λi) which is equivalent to inequalities
(B-1) and (B-2).

The conditions established in (B-1) and (B-2) do not guarantee the
existence of a breakpoint that satisfies them. To show that such a breakpoint
always exist, we rely on problem feasibility, and g being concave. From problem
feasibility, there exists an optimal λ∗ to g. In particular, from concativity there
exists λL, and λR with λL < λ∗ and λR > λ∗, such that dg

dλ(λL) > 0 and
dg
dλ(λR) < 0. There are then, only two possible situations that satisfy problem
feasibility and concativity. Either one of the linear segmets has gradient zero, or
λ∗ is a breakpoint. In both situations, inequalities (B-1) and (B-2) are satisfied.

This results in Property 3.3.

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

C
Proof of Proposition B.1

Proof. To see that this is true, let us consider two adjacent line segments of g,
gL and gR. Let λi be the i-th intersection of g and, specifically, the intersection
of the two line segments, gL and gR. Their equations are:

gL(λ) = gL(λi) + dgL
dλ (λi)(λ− λi) (C-1)

gR(λ) = gR(λi) + dgR
dλ (λi)(λ− λi) (C-2)

Where gL is defined in [λi−1, λi], for λi−1 < λi and gR is defined in
[λi, λi+1] for some λi+1 > λi. Note that the derivatives of both gL and gR

are constant because they’re lines. Clearly, the derivatives of gL and gR are
subgradients at λi. Moreover, by concativity, dgL

dλ > dgR

dλ .

Figure C.1: Function g, it’s line segments gL and gR, and line y.

Let v ∈ [dgR

dλ ,
dgL

dλ], and let y be the equation of the line with gradient v
that intersects point (λi, g(λi)). If λ < λi:

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

Appendix C. Proof of Proposition B.1 52

v 6
dgL
dλ (λi) (C-3)

⇔ 〈v, (λ− λi)〉 > 〈
dgL
dλ (λi), (λ− λi)〉 (C-4)

⇔ gL(λi) + 〈v, (λ− λi)〉 > gL(λi)〈
dgL
dλ (λi), (λ− λi)〉 (C-5)

⇔ y(λ) > gL(λ) (C-6)

(C-7)

Thus, the line y is always situated above line gL for λ < λi. On the other
hand, if λ > λi:

v >
dgR
dλ (λi) (C-8)

⇔ 〈v, (λ− λi)〉 > 〈
dgR
dλ (λi), (λ− λi)〉 (C-9)

⇔ gR(λi) + 〈v, (λ− λi)〉 > gR(λi)〈
dgR
dλ (λi), (λ− λi)〉 (C-10)

⇔ y(λ) > gR(λ) (C-11)

We conclude that the line y is always situated above g, except at λi,
where they intersect. Thus, v ∈ [dgR

λ
, dgL

λ
], is indeed a subgradient at g(λi). �

DBD
PUC-Rio - Certificação Digital Nº 1621891/CA

	Parametric search for variants of nested resource allocation problems
	Resumo
	Table of contents
	Introduction
	Literature Review
	Resource Allocation Problem
	Parametric Search and The Slope Selection Problem

	Preliminaries
	Known Results on the RAP-LB and RAP-NC
	Lagrangean Relaxation
	Optimality Conditions of RAP-LB-L
	Dual Optimal Property
	Obtaining Primal Feasibility
	Problem Feasibility Check

	Weakly Polynomial Algorithm
	Correctness and Complexity

	Strongly Polynomial Algorithm
	Parametric Search
	Parametric Search Applied to RAP-LB-L
	Sequential Algorithm C
	Complexity and Improvement

	Implementation
	Problem Instances
	Results

	Conclusion
	Bibliography
	Proof of W() being Convex
	Optimal Breakpoint
	Proof of Proposition B.1

